

M62364FP

8-bit 8ch Multiplying D/A Converter with Buffer Amplifiers

REJ03D0875-0300 Rev.3.00 Mar 25, 2008

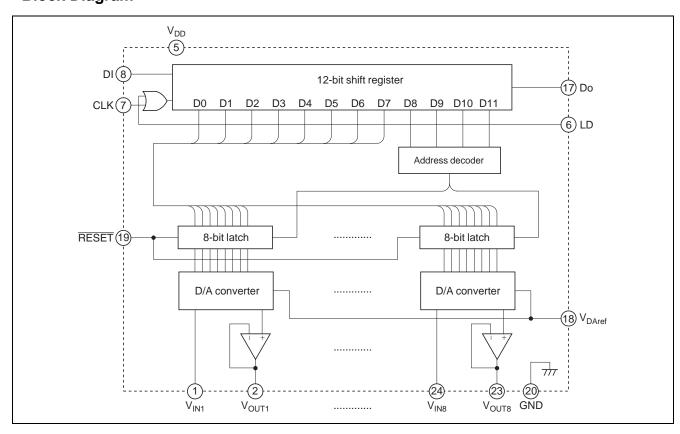
Description

The M62364FP is a CMOS 8-bit 8ch D/A converter having a multiplying function and output buffer amplifiers. It has a serial data input and can easily communicate with a microcontroller by the simple three-wiring method (DI, CLK, LD).

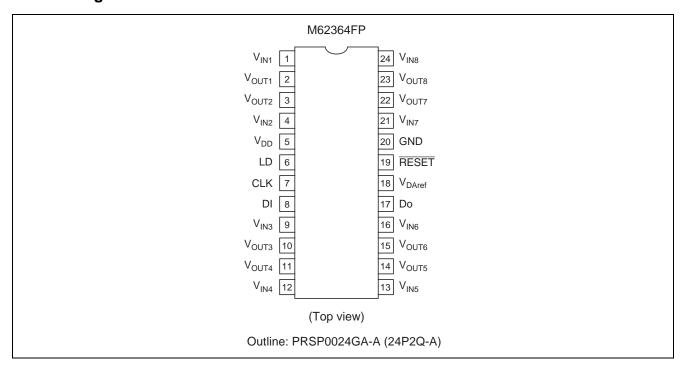
The output buffer amplifiers operating in AB-class has both sinking and driving capabilities of 1.0 mA or more and can operate in a whole supply range from V_{DD} to GND.

The IC is suitable for a use in automatic adjustment applications in conjunction with a MCU by utilizing the terminal D_0 for a cascading connection.

Features


- Three-wiring serial data transmission
- Doubled precision 8ch D/A converter employing an R-2R with higher-order segment method
- 8 buffer amplifiers operating in a whole supply voltage range from V_{DD} to GND
- 4 quadrant multiplication

Application


Digital to analog conversion for consumer and industrial equipment.

Gain setting and automatic adjustment of display-monitor and CTV.

Block Diagram

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
8	DI	Serial data input
17	Do	Serial data output
7	CLK	Shift clock input. Input data of DI are taken into the 12-bit shift register on a rising edge of the clock.
6	LD	A low state enables data loading to the 12-bit shift register.
		During a rising edge of LD, the data will be loaded to the output register.
19	RESET	Reset 8-bit latches
2	V _{OUT1}	D/A converter output with 8-bit resolution
3	V _{OUT2}	
10	V _{OUT3}	
11	V _{OUT4}	
14	V _{OUT5}	
15	V _{OUT6}	
22	V _{OUT7}	
23	V _{OUT8}	
5	V_{DD}	Power supply
20	GND	Ground
1	V _{IN1}	D/A converter input
4	V _{IN2}	
9	V _{IN3}	
12	V _{IN4}	
13	V _{IN5}	
16	V _{IN6}	
21	V _{IN7}	
24	V _{IN8}	
18	V _{DAref}	D/A converter reference voltage input

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{DD}	-0.3 to +7.0	V
Digital input voltage	V _{IND}	-0.3 to +7.0	V
Analog input voltage	V _{IN}	-0.3 to V _{DD} + 0.3	V
Analog output voltage	V _{OUT}	-0.3 to V _{DD} + 0.3	V
D/A reference voltage	V _{DAref}	-0.3 to V _{DD} + 0.3	V
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

<Ana/Dig Common Part>

 $(V_{DD} = 5 \text{ V} \pm 10\%, V_{DD} \ge V_{IN}, \text{GND}, V_{DAref} = 0 \text{ V}, \text{Ta} = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V_{DD}	2.7	5.0	5.5	V	
Supply current	I _{DD}	_	_	3.5	mA	CLK = 1 MHz, V_{CC} = 3 V, I_{AO} = 0 μA

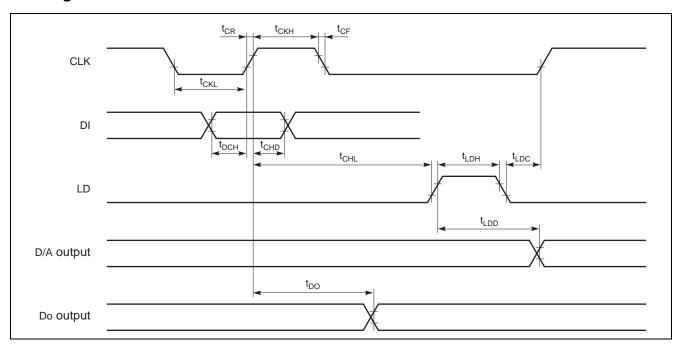
<Digital Part>

 $(V_{DD} = 5 \text{ V} \pm 10\%, V_{DD} \ge V_{IN}, \text{ GND}, V_{DAref} = 0 \text{ V}, \text{ Ta} = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Input leak current	I _{ILK}	-10	_	10	μΑ	$V_{IN} = 0$ to V_{DD}
Digital input "Low" voltage	V _{IL}	_	_	$0.2~V_{DD}$	V	
Digital input "High" voltage	V _{IH}	0.8 V _{DD}	_	_	V	
Do terminal output "Low" voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.5 mA
Do terminal output "High" voltage	V _{OH}	$V_{DD} - 0.4$	_	_	V	$I_{OH} = -400 \mu A$

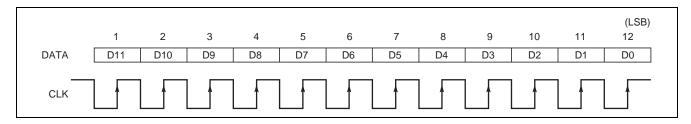
<Analog Part>

 $(V_{DD} = 5~V \pm 10\%,~V_{DD} \geq V_{IN},~GND,~V_{DAref} = 0~V,~Ta = -20~to~+85^{\circ}C,~unless~otherwise~noted.)$


			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Input current	I _{IN}	_	_	0.30	mA	$V_{\text{IN}} = 5 \text{ V}, V_{\text{DAref}} = 0 \text{ V}$ Proportional to Max. input current condition $(V_{\text{IN}} - V_{\text{DAref}})$ and digital data of each channels
D/A reference input current	I _{DAref}	-2.40	_	_	mA	V_{IN} = 5 V, V_{DAref} = 0 V Proportional to Max. input current condition ($V_{IN} - V_{DAref}$) and digital data of each channels
Resolution	RES	_	8	_	bit	
Differential nonlinearity	DNL	-1	_	1	LSB	V _{DAref} = 0.050 V (10 mV/LSB)
Nonlinearity	NL	-1	_	1	LSB	Without load ($I_{AO} = \pm 0$)
Buffer amplifier output	V _{AO}	0.1	_	V _{CC} - 0.1	V	$I_{AO} = \pm 100 \ \mu A$
voltage range		0.2	_	V _{CC} - 0.2		$I_{AO} = \pm 500 \ \mu A$
Buffer amplifier output current range	I _{AO}	-1	_	1	mA	Upper saturation voltage = 0.4 V Lower saturation voltage = 0.4 V
Output capacitive load	Co	_	_	0.1	μF	
Buffer amplifier output impedance	Ro	_	5	_	Ω	

AC Characteristics

 $(V_{DD} = 5~V \pm 10\%,~V_{DD} \geq V_{IN},~GND,~V_{DAref} = 0~V,~Ta = -20~to~+85^{\circ}C,~unless~otherwise~noted.)$


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Clock "L" pulse width	t _{CKL}	200	_	_	ns	
Clock "H" pulse width	tckH	200	_	_	ns	
Clock rise time	t _{CR}	_	_	200	ns	
Clock fall time	t _{CF}	_	_	200	ns	
Data setup time	t _{DCH}	60	_	_	ns	
Data hold time	t _{CHD}	100	_	_	ns	
LD setup time	t _{CHL}	200	_	_	ns	
LD hold time	t _{LDC}	100	_	_	ns	
LD "H" pulse duration time	t _{LDH}	100	_	_	ns	
Data output delay time	t _{DO}	70	_	350	ns	C _L = 100 pF
D/A output setting time	t _{LDD}	_	_	300	μS	$C_L \le 100 \text{ pF}, \text{ V}_{AO}: 0.1 \leftrightarrow 2.6 \text{ V}$
						This time until the output becomes the final value of 1/2 LSB

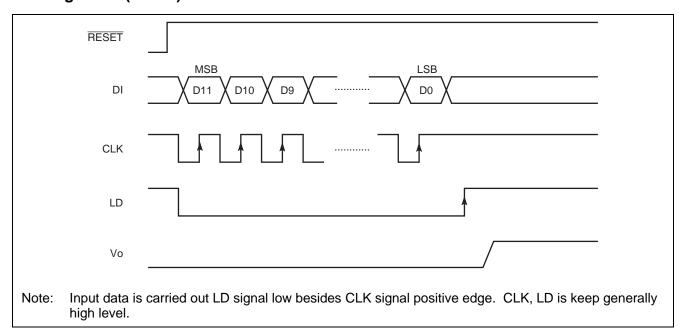
Timing Chart

Digital Data Format

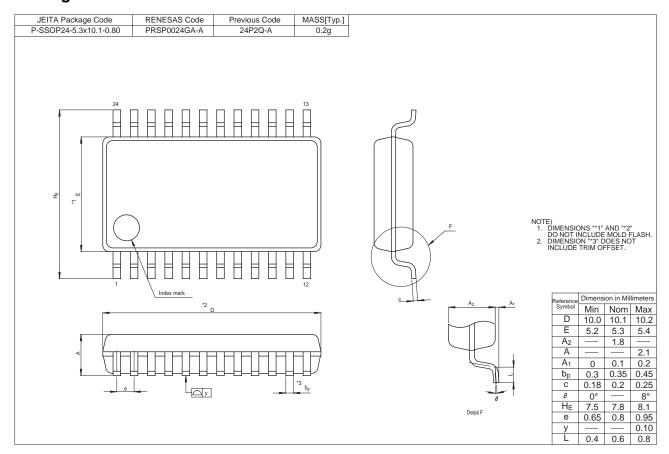
12-bit serial data

Data Assignment

D0	D1	D2	D3	D4	D5	D6	D7	: DAC data
(LSB)							(MSB)	•
D8	D9	D10	D11	: DAC se	elect data			


DAC Data

D0	D1	D2	D3	D4	D5	D6	D7	D/A Output
0	0	0	0	0	0	0	0	V _{DAref}
1	0	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 256 \times 1 + V_{DAref}$
0	1	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 256 \times 2 + V_{DAref}$
1	1	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 256 \times 3 + V_{DAref}$
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	(V _{IN} - V _{DAref}) / 256 × 255 + V _{DAref}


DAC Select Data

D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	V _{OUT1} selection
0	0	1	0	V _{OUT2} selection
0	0	1	1	V _{OUT3} selection
0	1	0	0	V _{OUT4} selection
0	1	0	1	V _{OUT5} selection
0	1	1	0	V _{OUT6} selection
0	1	1	1	V _{OUT7} selection
1	0	0	0	V _{OUT8} selection
1	0	0	1	Don't care
1	0	1	0	Don't care
1	0	1	1	Don't care
1	1	0	0	Don't care
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care

Timing Chart (Model)

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510